188 research outputs found

    On the Hydrodynamic Interaction of Shock Waves with Interstellar Clouds. II. The Effect of Smooth Cloud Boundaries on Cloud Destruction and Cloud Turbulence

    Full text link
    The effect of smooth cloud boundaries on the interaction of steady planar shock waves with interstellar clouds is studied using a high-resolution local AMR technique with a second-order accurate axisymmetric Godunov hydrodynamic scheme. A 3D calculation is also done to confirm the results of the 2D ones. We consider an initially spherical cloud whose density distribution is flat near the cloud center and has a power-law profile in the cloud envelope. When an incident shock is transmitted into a smooth cloud, velocity gradients in the cloud envelope steepen the smooth density profile at the upstream side, resulting in a sharp density jump having an arc-like shape. Such a ``slip surface'' forms immediately when a shock strikes a cloud with a sharp boundary. For smoother boundaries, the formation of slip surface and therefore the onset of hydrodynamic instabilities are delayed. Since the slip surface is subject to the Kelvin-Helmholtz and Rayleigh-Taylor instabilities, the shocked cloud is eventually destroyed in 310\sim 3-10 cloud crushing times. After complete cloud destruction, small blobs formed by fragmentation due to hydrodynamic instabilities have significant velocity dispersions of the order of 0.1 vbv_b, where vbv_b is the shock velocity in the ambient medium. This suggests that turbulent motions generated by shock-cloud interaction are directly associated with cloud destruction. The interaction of a shock with a cold HI cloud should lead to the production of a spray of small HI shreds, which could be related to the small cold clouds recently observed by Stanimirovic & Heiles (2005). The linewidth-size relation obtained from our 3D simulation is found to be time-dependent. A possibility for gravitational instability triggered by shock compression is also discussed.Comment: 62 pages, 16 figures, submitted to Ap

    Radiative open charm decay of the Y(3940), Z(3930), X(4160) resonances

    Get PDF
    We determine the radiative decay amplitudes for decay into DD^* and Dˉγ\bar{D} \gamma, or DsD^*_s and Dˉsγ\bar{D}_s \gamma of some of the charmonium like states classified as X,Y,Z resonances, plus some other hidden charm states which are dynamically generated from the interaction of vector mesons with charm. The mass distributions as a function of the Dˉγ\bar{D} \gamma or Dˉsγ\bar{D}_s \gamma invariant mass show a peculiar behavior as a consequence of the DDˉD^* \bar{D}^* nature of these states. The experimental search of these magnitudes can shed light on the nature of these states.Comment: 18 pages, 9 figure

    Chord distribution functions of three-dimensional random media: Approximate first-passage times of Gaussian processes

    Get PDF
    The main result of this paper is a semi-analytic approximation for the chord distribution functions of three-dimensional models of microstructure derived from Gaussian random fields. In the simplest case the chord functions are equivalent to a standard first-passage time problem, i.e., the probability density governing the time taken by a Gaussian random process to first exceed a threshold. We obtain an approximation based on the assumption that successive chords are independent. The result is a generalization of the independent interval approximation recently used to determine the exponent of persistence time decay in coarsening. The approximation is easily extended to more general models based on the intersection and union sets of models generated from the iso-surfaces of random fields. The chord distribution functions play an important role in the characterization of random composite and porous materials. Our results are compared with experimental data obtained from a three-dimensional image of a porous Fontainebleau sandstone and a two-dimensional image of a tungsten-silver composite alloy.Comment: 12 pages, 11 figures. Submitted to Phys. Rev.

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Differential Expression of MicroRNAs in Adipose Tissue after Long-Term High-Fat Diet-Induced Obesity in Mice

    Get PDF
    Obesity is a major health concern worldwide which is associated with increased risk of chronic diseases such as metabolic syndrome, cardiovascular disease and cancer. The elucidation of the molecular mechanisms involved in adipogenesis and obesogenesis is of essential importance as it could lead to the identification of novel biomarkers and therapeutic targets for the development of anti-obesity drugs. MicroRNAs (miRNAs) have been shown to play regulatory roles in several biological processes. They have become a growing research field and consist of promising pharmaceutical targets in various fields such as cancer, metabolism, etc. The present study investigated the possible implication of miRNAs in adipose tissue during the development of obesity using as a model the C57BLJ6 mice fed a high-fat diet

    Structural Basis and Catalytic Mechanism for the Dual Functional Endo-β-N-Acetylglucosaminidase A

    Get PDF
    Endo-β-N-acetylglucosaminidases (ENGases) are dual specificity enzymes with an ability to catalyze hydrolysis and transglycosylation reactions. Recently, these enzymes have become the focus of intense research because of their potential for synthesis of glycopeptides. We have determined the 3D structures of an ENGase from Arthrobacter protophormiae (Endo-A) in 3 forms, one in native form, one in complex with Man3GlcNAc-thiazoline and another in complex with GlcNAc-Asn. The carbohydrate moiety sits above the TIM-barrel in a cleft region surrounded by aromatic residues. The conserved essential catalytic residues – E173, N171 and Y205 are within hydrogen bonding distance of the substrate. W216 and W244 regulate access to the active site during transglycosylation by serving as “gate-keepers”. Interestingly, Y299F mutation resulted in a 3 fold increase in the transglycosylation activity. The structure provides insights into the catalytic mechanism of GH85 family of glycoside hydrolases at molecular level and could assist rational engineering of ENGases

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    corecore